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On inertial flow over topography. 
Part 1. Semigeostrophic adjustment to an obstacle 

By L. J. PRATTi 
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 

(Received 30 August 1982) 

The nonlinear time-dependent adjustment of a homogeneous rotating-channel flow 
to the sudden obtrusion of an obstacle is studied. Solutions are obtained using a 
Lax-Wendroff numerical scheme which allows rotating breaking bores and jumps to 
form and be maintained. The flow upstream of the obstacle is found to be completely 
blocked, partially blocked (and hydraulically controlled), or unobstructed depending 
upon the height of the obstacle. Partial blockage is accomplished through the 
excitation of a combination of nonlinear Kelvin waves, some of which steepen into 
interfacial shocks. Riemann invariants for the Kelvin waves are found, and jump 
conditions on mass, momentum and potential vorticity for the shocks are discussed. 
The shocks are surrounded by dispersive regions of Rossby deformation scale, and 
the potential vorticity of passing fluid is altered a t  a rate proportional to the 
differential rate of energy dissipation along the line of breakage. For the special case 
of initially uniform potential vorticity the asymptotic state is found as a function 
of the initial conditions. 

1. Introduction 
A significant body of literature has been developed on the subject of large-scale 

geophysical flow over topography.$ Most of this work has been done within the 
framework of quasigeostrophic theory, which assumes the Rossby number to be small. 
However, it is known that moderate to large Rossby numbers can be achieved where 
the constricting effect of the topography is large. A meteorological example is the 
severe downslope wind that is observed in the eastern Rocky Mountains (Klemp & 
Lilly 1975). Oceanic strait and sill flow such as occurs in the Denmark Strait 
(Worthington 1969) and coastal currents such as the Agulhas Current (Gill & 
Schumann 1979) can also be strongly inertial. The primary interest here will be in 
the oceanic case, where the current is strongly influenced by side walls as well as 
bottom relief. In  addition to nonlinearity, the dynamical balance of such currents 
is often complicated by strong time dependence arising from hydrodynamic instab- 
ilities or external forcing, as exemplified in the current-meter records of Worthington 
(1969). 

Previous investigations (e.g. Whitehead, Leetmaa & Knox 1974; Gill 1977 ; Shen 
1981) of inertial strait and sill flow have concentrated on the behaviour of steady 
uniform-potential-vorticity flow in slowly varying channels. Special attention has 
been given to the ‘ hydraulics’ of such flows, and, in particular, the conditions under 
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which an obstacle or side contraction can control the upstream state (in the same 
way that a darn controls the level of a reservoir). However, the complication of time 
dependence has received little attention in rotating hydraulics (and hydraulics in 
general). This is odd, since time dependence is implicit in the physical notion behind 
the word ‘control’. As Stern (1974) writes, a controlled state results if ‘The free 
discharge of a fluid thru an open channel cannot remain unaltered when the width 
of the channel is reduced in the downstream direction, or when the height of the 
channel floor is raised.’ An obstacle or contraction thus exercises control through 
time-dependent means. This idea can be seen in connection with non-rotating flow 
through the laboratory experiments of Long (1954, 1970), who towed an obstacle 
through a tank of (otherwise stagnant) fluid, and in the numerical experiments of 
Houghton & Kasahara (1967), who considered the sudden obtrusion of an obstacle 
into a uniform flow. In both cases obstacles of greater than a certain critical height 
induced a permanent response in the fluid which was eventually felt a t  great distances 
from the obstacle. This ‘upstream influence’ was set up by a combination of bores 
and rarefaction waves, which were generated near the obstacle during the initial 
adjustment. The asymptotic state (as time + C O )  consisted of a new steady state whose 
flow rate was decreased from its initial value, and which occasionally contained a 
hydraulic jump in the lee of the obstacle. 

The adjustment problem described above provides a useful way of understanding 
how steady solutions are established, how an obstacle exercises control over a flow, 
and how the flow might respond to other types of time-dependent forcing. The results 
indicate that free-surface shocks (bores and hydraulic jumps) and rarefaction waves 
play a crucial role in the adjustment of a controlled flow and in the asymptotic state 
itself. We will now investigate numerically the time-dependent adjustment of an 
inertial rotating-channel flow to the sudden obtrusion of an obstacle. 

Part 1 of this series of papers deals solely with flows in slowly varying channels. 
This assumption leads to a semigeostrophic state in which the cross-stream momentum 
balance is geostrophic, while that  along the stream is ageostrophic. The effects of wave 
dispersion tend to be suppressed in such a system, and the dynamics of adjustment 
appear to be similar to those of more-classical one-dimensional flows in which 
non-dispersive waves determine the outcome. It will be seen, for example, that  Kelvin 
waves play the same role in the adjustment of a uniform-potential-vorticity flow that 
long gravity waves do in the experiments of Long (1954, 1970) and Houghton & 
Kasahara (1968). In  Part 2, we will consider the influence of dispersive (Poincar6) 
waves, which arise when the assumption of slow variations is relaxed. 

The format of Part 1 is as follows. In $92 and 3 we derive the semigeostrophic 
equations and discuss some properties of nonlinear semigeostrophic waves for the 
special case in which the potential vorticity is uniform. In $4 we present numerical 
solutions to the adjustment problem and discuss the dependence of the asymptotic 
state on the initial conditions. Sections 5 and 6 contain analysis of the interfacial 
shocks that arise in the numerical solutions, including the derivation of an approximate 
relation for connecting the upstream and downstream states across a shock and 
discussion’of the ability of the shock to alter potential vorticity. Finally, 97 contains 
a predictive theory for total flow blockage by the obstacle - a process which is beyond 
the capabilities of the numerical model. 
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FIQURE 1.  Definition sketch showing side and cross-sectional views of rotating channel. 

2. Basic equations and the semigeostrophic approximation 
The geometry to be considered (see figure 1)  is that ofa  horizontal channel aligned 

in the x-direction and rotating with constant angular speed about the vertical 
(z-axis). The channel contains vertical walls at  y = W and bottom elevation b(x) 
which varies on a horizontal scale L. A single inviscid layer of density pz flows beneath 
a deep inactive upper layer of density p1 and extends entirely across the channel (no 
separation of the lower layer occurs). If D is a scale for h(z ,  y ,  t ) ,  the thickness of the 
lower layer, then the hydrostatic approximation will be valid provided that D / L  4 1 .  
Under these conditions, the lower layer is described by the shallow-water equations 
(Pedlosky 1979). Using the dimensionless variables 

and dropping primes, the following dimensionless shallow-water equations result : 

ut+uu,+Vuy-F~ = -h,-b,, 

S2(vt + UV,  + VV,) + FU = - h,, 

ht + (uh), + (vh), = 0, 
where 

W 
6 = - 

L (horizontal aspect ratio), 

F = -  wf (width scale/Rossby radius of deformation) 
(9’DP 

Note that the parameter F can be rewritten as 

where R, is a Rossby number. The parameter range 6 4 1 ,  R, % 1 ( F  4 1 )  applies to 
classical hydraulics and categorizes the work of Long (1954, 1970) and Houghton & 
Kasahara (1968). Part 2 of this series will deal with the parameter setting 6 = 1 and 
F = R, = 1. Here we will be concerned with the ‘semigeostrophic’ limit in which the 
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flow is inertial (R, = 1 )  but varies slowly in the x-direction (6 4 1).  I n  this case 
(2.1 )-(2.3) become db 

dx U~+UU,+VU,-V = -hz--, (2.4) 

12.5) 

h, + (uh), + (vh), = 0, (2.6) 

u = - h, + 0(a2), 

From these follows the conservation law for potential vorticity 

where 
1 -u, $=7 + O ( P ) .  

3. Time-dependent theory and steady solutions for q5 = constant 

Equation (2.5) implies that  the lateral acceleration of fluid particles is unimportant 
in the cross-channel momentum balance. This dynamical restriction is reminiscent of 
the hydrostatic balance in which the vertical acceleration of fluid particles is 
neglected. Before proceeding to numerical solutions we pause to illuminate the 
consequences of (2.5) by discussing an  analytic theory for the special case in which 
q5 = constant. The development begins along the lines of Gill (1977), who found steady 
solutions containing uniform 4. We start by combining (2.5) and (2.8) to form a single 
equation for h : 

For q5 > 0, the solution can be written as 

h,,-#h = - 1. 

sinh (@y) cosh (@y) 
sinh ( @ w ) + ~ ( ~ '  t, cosh ( $ 4 ~ ) '  

h = $-'+ A(%, t )  

where w is the channel half-width. It follows from (2.5) that  

cosh ( $ 4 ~ )  [ sinh(q5iw) 
u = - @  A ( x , t )  

For $$ b 1 the flow thus becomes confined to sidewall boundary layers. 
Following Gill we now introduce the following dependent variables : 

- 

h = Q[h(x, W, t )  + h(x, - W, t ) ]  = 4-l + B ( z ,  t ) ,  

Ah = $[h(x, W, t ) -  h(x, - W ,  t ) ]  = A ( x ,  t ) ,  

AU = Q [ u ( x ,  w , ~ ) - u ( x ,  -w,t)] = -@TB(z, t ) ,  

(3.3) 

(3.4) 

~ [ u ( z , w , ~ ) + u ( x ,  -w,t)] =-@T-'A(x,t), (3.5) 

(3.6) 

where T = tanh ( ~ $ 4 ) .  

U = -$@'Ah, From these it follows that 
(3.7) 

AU = @T(@-'-h). (3.8) 

To find the x- and t-dependence of the solution, we evaluate (2.4) on either sidewall 
and apply the boundary condition 

v* = 0  ( y = + w ) .  (3.9) 
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Taking the sum of the results and applying (3.3)-(3.6) yields 

db 
dx 

2 t i t + ( t i 2 + A ~ 2 + 2 h ) z  = -2-, 

while the difference gives 
Au,+ ( t iAu+Ah) ,  = 0. 

(3.10) 

(3.11) 

Equations (3.7) and (3.8) can now be used to eliminate Au and ti in favour of Ah 
and h. Thus (3.10) and (3.11) become 

(3.12) 

ht - (@T- ' h )  Ah,- ( 4 W ' A h )  h, = 0. (3.13) 

We now have two equations for h (the average of the side depths) and Ah (the 
difference in side depth, and therefore a measure of velocity). Steady solutions can 
be found by noting that the steady versions of (3.12) and (3.13) are exact differentials. 
Integration with respect to x yields a Bernoulli equation 

T-'$ Ah2 + $!P($-'- k)' + 2k = - 2b(x) +ZIT, (3.14) 

and a mass-conservation statement 

A h h =  -Q, (3.15) 

where B is the average of the Bernoulli constant h2 + b + h on either wall and Q is 
the rate of flow. Equations (3.14) and (3.15) can be combined to form the following 
quartic equation for 6: 

~T2($- ' -h )2k2+~h3+2(b (x ) -B)~2+T-2~Q2 = 0. (3.16) 

Gill (1977) discusses the properties of the solutions to (3.16) in detail using a slightly 
different set of parametemt Here we simply sketch a family of solutions obtained 
by holding Q constant and considering various values of B. The bottom topography 
consists of an isolated obstacle, and the solutions are drawn (figure 2 )  in terms of the 
interface elevation along the wall at y = w (as computed from h ( w )  = h+ Ah). It can 
be seen that two distinct solutions exist for each large value of B and that each 
maintains the same depth on either side of the obstacle. As B is reduced, however, 
a critical value (B= 4.29) is reached a t  which the two curves coalesce over the sill 
of the obstacle. Here it is not obvious which branch is correct. After moving along 
the interface curve from @ to 0, for example, it  is not clear whether one should 
proceed to  @ or 0. Based on physical intuition we would likely choose@, since 
this branch resembles the commonly observed configuration of fluid flowing over a 
dam or weir. 

If B is further reduced the solutions no longer extend across the entire obstacle. 
The energy of the flow has been reduced to the point where the fluid cannot 
surmount the sill. The solution for B = 4.29 contains the minimum energy necessary, 
and is therefore ' controlled ' in the sense that a small increase in the sill height would 
necessitate a time-dependent change in the upstream conditions for flow to continue. 
Such upstream influence would not be necessary for the other continuous solutions 
since they contain energy in excess of the required amount. 

Some of the t,ime-dependent properties of (3.12) and (3.13) are revealed through 

t In place of B, Gill uses a parameter that measures the partitioning of the flow into the sidewall 
boundary layers. 
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FIQURE 2. Steady solutions for flow over obstacle showing interface elevations along the side wall. 
The family of interface profiles are obtained by fixing Q = 4 = 1.0 and varying B. The flow at the 
coalescence point (labelled 0) is critical with respect to the Kelvin wave speed. 

reformulation in terms of characteristics. Equations (3.12) and (3.13) form a 
quasilinear system which can be written in the form 

where 

aui au 
at u ax 

-+a = b,, 

I ui = (Ah h), 

(3.17) 

I 
1 (3.18) 

The characteristic speeds are given (Whitham 1974) by the eigenvalues of aij, namely 

(3.19) 

and can be interpreted as the x-speeds of wave fronts propagating into an undisturbed 
region characterized by Ah and h. An alternative interpretation is that A ,  represent 
the phase speeds of infinitesimal waves propagating on a current characterized by 
uniform values of u and h. For narrow channels (T2-t  0) A ,  reduce to u i- hi, the speeds 
of long gravity waves. As it stands we may interpret A ,  as the speeds of Kelvin 
waves being advected at rate u and propagating at relative rates hi[ 1 - P( 1 - $h)]t. 
Since T2 < l , A ,  - will always be real, and consequently (3.12) and (3.13) will be 
hyperbolic. 

Returning to figure 2, we now inquire into the properties of the steady solutions 
with respect to wave propagation. A t  the sill of the obstacle, the minimum value of 
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B occurs where the solutions coalesce (labelled 0 ). Taking &/ah = 0 (with Q and 
b fixed) in (3.16) leads to the result that the flow is critical, A- = 0, a t  the coalescence 
point. Using Ahc and hc to denote the values of Ah and hat the critical point, 

@T-'AhC = - h,i[ 1 - !P( 1 - $&)I?, (3.20) 

in view of (3.19). It is easily verified that the flow is subcritical (A- < 0) for h> hc 
and supercritical (A- > 0) for h < he. 

The characteristic forms of (3.12) and (3.13) provide interpretative aids in under- 
standing the nonlinear evolution of the Kelvin waves. Following Whitham (1974) the 
characteristic forms, obtained through multiplication of (3.17) by eigenvectors li 
satisfying l ik(ai j -A+) - = 0, are 

where 
a a -- D* - - + A ,  - 

Dt at -ax 

(3.21) 

is a derivative taken along characteristic curves with slope A,. A simplified version 
of (3.21) can be obtained through division by hand integrationby parts of the second 
term on the left. The result is 

db %R - _ _  
Dt * - dx' 

(3.22) 

with the Riemann variables R ,  - defined by 

R, = t i+((h( l - !P)+!P~h2)~+~T--l~-~(l-!P)  

x In [2T@(h(l -In)+ !P$h2)4+2!P#k+ (1 -!P)]}. (3.23) 

Using a Taylor expansion for the logarithm it is easy to verify that R ,  approaches 
the non-rotating limit @ + 2 B  as T+O. As is the case in this limit, the Riemann 
variable is conserved following characteristics, provided that the bottom is flat 
(db/dx = 0). It is further evident from (3.19) and (3.23) that A,  and R ,  behave 
monotonically with respect to h(e.g. A+ and R ,  increases with increasing h, for k > 0). 
This property can be used to show that the nonlinear steepening and spreading 
properties of the Kelvin waves depend upon a and h in a way similar to that of long 
gravity waves on u and h. The argument is an extension of the standard argument 
for long gravity waves as described in Stoker (1957). Picture, for example, a Kelvin 
wave front entering an undisturbed region of the channel where the flow is charac- 
terized by uniform values of k and Ah. The front can be considered a continuum 
of wavelets, each with speed A, (say) and each carrying a non-changing value of R,. 
As the front propagates through the undisturbed region it must maintain a uniform 
value of R-, as required by (3.22). Thus, if the wave tends to increase kover  its 
undisturbed value it must also increase ti in order to conserve R-. The wave speed 
A, must also increase, in view of (3.19), implying a steepening of the wave front. In  
general, one finds that waves of elevation (measured in terms of h) tend to steepen 
and break while those of depression tend to spread in the manner of a rarefaction 
wave. 

The adjustment of a uniform-potential-vorticity flow will be accomplished through 
generation of the waves described above. In the small-amplitude limit, these waves 
can be identified as Kelvin waves modified by the non-uniform flow upon which they 
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propagate. Large-amplitude waves will tend to steepen or spread nonlinearly in the 
manner of long gravity waves. 

4. Numerical solutions to the adjustment problem 
We now study the establishment of steady solutions through an adjustment 

problem similar in design to the experiments of Long (1954) and Houghton & 
Kasahara (1968). The initial state consists of a subcritical (A- < 0), geostrophically 
balanced, steady flow with velocities u = u,(y),  v = 0, and depth h = h,(y) over a flat 
bottom. At t = 0 an obstacle appears in the channel and the resulting motion is 
computed numerically. The numerical scheme consists of a two-step Lax-Wendroff 
finite-difference method which integrates the full set of two-dimensional shallow-water 
equations (2.1)-(2.3). The obstacle has a small horizontal aspect ratio (6 x t ) ,  so that 
the flow is approximately semigeostrophic. The Lax-Wendroff scheme allows 
interfacial shocks to form and be maintained in the interior of the rectangular mesh, 
ensuring that mass and momentum flux is conserved across the shocks. The numerical 
scheme is presented in more detail in appendix A. 

I n  order to make comparisons with the theory discussed in $3, we first consider 
the case in which the initial potential vorticity is uniform and positive : 

l - u ~ q  = 4 = constant > 0. 
h, 

In  this case the adjustment that  occurs and the asymptotic state that results are found 
to depend crucially upon the height of the obstacle b, in relation to a critical height 
b,. This critical height is the maximum obstacle height for which a steady flow with 
parameters Q = Q, and B = B, is able to exist. In  other words, given the initial 
parameters B, and Qo it is possible to find a family of steady solutions having flow 
rate Q, and 'energy ' B, for flow over obstacles of heights b < b,. When b = b, the flow 
contains the minimal amount of energy needed to exist, and therefore becomes critical 
a t  the obstacle's sill, as indicated in figure 2. Therefore 

(4.1) 
in view of (3.14). 

An expression forb, in terms of Qo and go can be obtained through the use of (3.15) 
applied at the sill and the critical condition (3.20) : 

- 
b, = B, - iT-2$ Ah: - 4 $!P( $-I  - h,)2 - h,, 

h 4 , + $ - 1 ( ~ - - 2 - 1 ) ~ ~ - ~ - 4 ~ ~  = 0, (4.2) 

while (3.20) and (4.1) combine to give 
- - 

b, = RO-&4F($-' - h,) ($-'-2h,) -$,. (4.3) 

Together (4.2) and (4.3) give b, in terms of &, and B, with h, an intermediate variable. 
A plot of b, as a function of B, with Qo = 1 appears in figure 9. Unfortunately, there 
appears to be no simple way of displaying this information in terms of a Froude 
number, as is done in connection with non-rotating flows. 

The adjustment that occurs when b, < b, is shown in figure 3. The obstacle is drawn 
in the lower frame and the upper three frames show perspective views of the interface 
after various time steps. After 20 time steps (one rotation period), the interface has 
begun to bulge over the newly formed obstacle. After 60 steps, this bulge has broken 
into two isolated Kelvin waves - one that moves upstream along the near wall and 
the other downstream along the far wall. At 100 time steps, these waves have moved 
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Y 

FIGURE 3. Adjustment of an initially subcritical flow for the case 6, < b,. The initial potential 
vorticity is uniform. The obtruded obstacle is shown in the lower frame and the evoluticn of the 
interface in the upper three frames. The parameter settings are $o = 1.4, T = 0.8, Q0 = 0.5, B,  = 1.5, 
b, = 0.2, b, = 0.15. 

away from the obstacle, leaving behind a steady flow which resembles one of the 
subcritical curves of figure 2. The Kelvin waves only temporarily disturb the flow 
away from the obstacle: after the waves pass the flow fields return to their initial 
values. We therefore say that the obstacle exerts no upstream in juence  since no 
permanent response is induced in the flow away from the obstacle and the asymptotic 
state can be computed directly from (3.16) using the initial values E0 and Q,. 

If b,  b ,  the adjustment is quite different, as shown in figure 4. lnstead of isolated 
Kelvin waves, the bulge now develops into bores which are trapped against the 
sidewalls in the manner of the Kelvin waves. After 80 time steps, these bores have 
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b > b ,  

FIQURE 4. Adjustment for 6 ,  > b, showing establishment of hydraulically controlled flow. The initial 
conditions are identical with those of figure 3 except for the obstacle height b, = 0.25. 

moved completely away from the obstacle and have nearly steepened to  the point 
of breakage. The downstream-moving bore is trailed by a rarefaction wave which is 
beginning to spread (also see figure 5 ) .  The bores leave behind a steady flow which 
resembles solution curve 0-0 of figure 2 and contains a hydraulic jump in the 
lee of the sill. This steady flow contains a flow rate which is decreased from the initial 
value and can be termed partially blocked. The critical condition (4.3) is satisfied 
(within a tiny error) a t  the sill. Here the obstacle clearly has established upstream 
influence through generation of the upstream bore. Further increases in the height 
of the obstacle lead to a repetition of this chain of events and the establishment of 
a new critical state over the obstacle. 



Inertial flow over topography. Part 1 205 

The determination of the asymptotic state when b, 3 b, is more subtle. In  the 
non-rotating analogue of this problem, Houghton & Kasahara (1968) connected the 
initial state far from the obstacle to the flow over the obstacle using the Rankine- 
Hugoniot jump conditions and the fact that  a critical condition exists over the 
obstacle. The same procedure should be possible here provided that the appropriate 
jump conditions are known. This problem is taken up in $95 and 6. 

Inspection of the hydraulic jump in the top frame of figure 4 reveals the presence 
of short parasitic waves in the lee. These waves are numerical oscillations which are 
commonly found in shock computations using Lax-Wendroff schemes. A small 
artificial viscosity was found necessary to keep these numerical instabilities under 
control (appendix A). Despite this, i t  was possible to make stable computations over 
only 400 or 500 time steps, after which time the numerical oscillations grew 
unacceptably large. 

The results above were obtained using subcritical initial states. Some supercritical 
cases were also computed, with the results considerably noisier. However the 
adjustment proved to be similar to that shown in figure 4 with the asymptotic state 
again resembling solution 0-0 of figure 2 .  I n  no case was the branch 0-0 
realized. 

A series of numerical solutions were also obtained for the following initial state : 

I u, = a = constant, 

h, = 1 +ay (-0.5 < y < 0.5), 
(4.41 

leading to the non-uniform potential-vorticity distribution 

$0 = (1  + ay)-l. 

Because of the lack of an analytic theory for flows with non-constant $, the 
dependence of the asymptotic state on the obstacle height is more difficult to 
formulate. However, the intuition gained regarding the energy argument made for 
uniform-$ flows suggests that some critical obstacle height b, should exist which 
determines the nature of the adjustment. The numerical experiments carried out 
using initial state (4.4) supported this idea. For b, less than an (unknown) critical 
height b, the adjustment was similar to that of figure 3, with no upstream influence 
imparted by the obstacle. An actual solution for b, > b, and a = 0.7 is shown in figure 
5 using longitudinal sections of the flow to display the results. The bores, rarefaction 
wave and hydraulic jump are again present and are responsible for the apparent 
establishment of a hydraulically controlled state. It is not known, however, whether 
this similarity will continue to exist on longer timescales. 

5. Shock connection 
The interfacial shocks that arise in the partially blocked solutions play crucial roles 

in both the adjustment process and the asymptotic state. The rotating hydraulic jump 
pictured in figure 4 might serve as a possible explanation for the mixing that is often 
observed downstream of oceanic sills. We now make a closer examination of these 
interfacial shocks and try to determine how upstream and downstream states are 
connected. The following development neglects the entrainment of upper-layer fluid 
that might occur in a laboratory experiment but which is disallowed by the numerical 
scheme. For this reason, the theory presented below might more accurately be 
described as a free-surface shock theory. 
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FIGURE 5 .  Adjustment of flow containing non-uniform potential vorticity to an apparent hydrau- 
lically controlled state. The left-hand figures show the evolution of the interface along longitudinal 
sections taken near the wall at y = -w (labelled A ) ,  a t  mid-channel (labelled B ) ,  and along the wall 
a t  y = w (labelled C). The right-hand figures show the y-momentum balance a t  mid-channel across 
the upstream-moving wave. As this wave steepens, the dispersive term S2v, becomes increasingly 
significant. The initial potential v_orticity varies linearly from a value of 1.5 a t  y = +w to 0.75 at 
y = -w, b, = 0.25, Q, = 0.7 and B, = 0.15. 
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Let us first relax the narrow-channel approximation and consider a shock which 
exists in a channel flow of arbitrary width. Although the interior of the shock is a 
complicated region in which the shallow-water approximation breaks down, no 
sources of mass or momentum flux are present and we may connect the upstream 
and downstream states by integrating the conservation laws for mass and momentum 
flux across the discontinuity. The conservation laws for momentum flux are obtained 
by multiplication of (2.1)-(2.3) (with S = R, = 1 )  by h, integration by parts, and 
application of (2.3). The results are 

db 
dx 

(uh),+(u2h+*h2)5+ (uwh), = -h-+hv, 

(vh), + (uvh), + (v2h + Bh”, = - uh. (5.2) 

The continuity equation 
h, + (uh), + (wh), = 0 (5.3) 

is already in conservation-law form. 
Without any loss in generality, we can rotate the (x, y)-coordinates into (n, s)-  

coordinates such that s is measured tangent to  the shock and n normal to  the shock 
at some point P. Upon integration across the shock and shrinkage of the interval of 
integration to  zero, only contributions from the n- and t-derivatives will remain finite. 
For example, integration of the continuity equation (5.3) from A < q(P) to B > q(P) 
gives 

where q is the n-position of the shock and (dn), u ( ~ ) )  are the normal and tangential 
velocities. Applying Leibnitz’s rule to the first two terms on the right-hand side of 
the above equation and letting A- tq - ,  and B+g+,  we find 

or c [ h ]  - [u(n)h] = 0 
A B  A B 

and c = dq/dt is the velocity of the shock normal to 
(5.1) and (5.2) yields 

(5.4) 

itself. Similarly, integration of 

Equations (5.4) and (5 .5)  are the familiar Rankine-Hugoniot conditions on mass 
and momentum flux that apply to  one-dimensional shocks. The third relation can 
be simplified to 

upon combination with (5.4). Therefore the tangential velocity is continuous, 
implying that the potential vorticity (1  + a ~ ( ~ ) / a n  - aucn)/as)/h of a fluid parcel 
crossing the shock must remain finite - though not necessarily conserved. 
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FIGURE 6. Plan view of channel showing shock and surrounding dispersive region. The dispersive 
influence is confined to R,  and R,, and the entire pattern translates to the left a t  speed C,. 

If dS) -+ 0, then (5.4) and (5.7) further imply that the velocity vector must change 
direction upon passing the shock. This demands that the shock become perpendicular 
to any solid boundary at the point of that contact, otherwise the shock would induce 
a flow normal to the boundary. More generally, the shock must become aligned 
perpendicular to x as v / u  + 0. 

In  general, given uLn), u!$ and h, one can compute the downstream fields up), us") 
and h, using (5.4), (5.5) and (5.7), provided that c is known. The semigeostrophic case 
is apparently simpler since the ratio of (dimensional) v to u approaches zero and the 
entire shock should be described by a single velocity c.  Under these conditions, it is 
tempting to describe the shock as a weak solution to the semigeostrophic equations 
(2.4)-(2.6). In  such a description the flow would be semigeostrophic at all points not 
on the shock. However, equations (5.4), (5.5) and (5.7) make no allowance for 
geostrophy. Being proportional to velocity (and not its derivative) rotational terms 
must act over a finite distance and therefore do not appear in (5.4)-(5.7). G' wen a 
semigeostrophic upstream state, for example, there is no guarantee that the velocity 
u, immediately downstream of the shock (as computed using (5.4), (5.5) and (5.7)) 
will be in geostrophic balance with h,. We therefore submit that the shock is bordered 
by a region in which the terms S2(v,+uv5+vw,) becomes as large as u and h, and 
therefore in which lateral dispersion becomes important. The width of this dispersive 
region is O(6) (the deformation radius) and its role is to adjust the shock to the 
semigeostrophic flow on either side. 

Figure 5 shows the importance of lateral dispersion (as reflected by the y-momentum 
balance) as a front steepens into a bore. The information is taken from the upstream 
moving front shown in the left-hand side of the figure. Initially the flow is 
semigeostrophic (figure 5 a )  but the geostrophic balance weakens as the front 
steepens. This is due to the tendency of the front to counter the cross-channel 
interface tilt. Meanwhile, the term S2v, is becoming significant over an O(6) interval 
about the front (figures 5 b ,  c ) .  

Is it possible to connect the flow upstream of the dispersive region to that 
downstream without resolving the complicated region in between ? In  general, the 
answer is no. However, it is possible to derive approximate formulas for special cases. 
One such case is typified by the shocks observed in the numerical experiments. Once 
formed, these shocks and their surrounding dispersive region were observed to 
translate with little change in form a t  a fixed speed c, along the channel. For such 
shocks, one might be tempted to simply equate the net mass and momentum flux 
upstream and downstream of the translating region. Referring to figure 6, this 
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procedure would involve integrating the mass and momentum flux over sections A’ 
and B’ (which represent the outer extremities of the dispersive regions R A  and RB) 
and equating the results, thereby neglecting any mass and momentum that is added 
to RA and RB. I n  terms of momentum, such an integration leads to 

as shown in appendix B. Momentum flux can thus be gained in R, + RB through 
bottom topography (h dbldx) and rotation (hv). However, since the area of RA + RB 
is 0 ( S 2 ) ,  the right-hand side of (5.8) is O ( P )  while the left is O(6).  This allows us to 

‘[J {(u-c,)uh+&2}dy = O(6) 

(i.e. an error O(6) is incurred in equating the net momentum flux across the shock 
and dispersive region). The corresponding restriction on mass flux, 

1 (5.9) 
write W 

6 -w 
A‘ B’ 

(U-c,) hdy = 0, 1 
A‘ B‘ 

(5.10) 

can, of course, be made with no error. 
An alternative statement of momentum-flux conservation which is accurate to the 

same order can be derived through integration along the side walls, rather than over 
R, and R,. Taking advantage of the fact that  v = 0 a t  the wall, we find 

(5.11) 

whereas f denote the values a t  f w. The values of U+ and h+ a t  A’ and B’ can be 
related to  U- and h- through (3.3)-(3.8). Equations (5.9) and (5.11) are accurate to 
O(6) while semigeostrophy is .tccurate to O ( P ) .  

and C, are given. Are u,!(Y) and hB,(y) then 
uniquely determined by (5.9) and (5.1012 Since the flow at B is semigeostrophic, 
(3.22) and (3.25) can be combined to  form a single equation for h,.: 

Suppose hA’(y) (and thus 

(5.12) 

For suitably well-behaved $ B ~ ( ~ ) ,  solutions will exist and contain two arbitrary 
constants. Equations (5.9) provide two equations for their values, provided that (5.12) 
can be solved. However, the solution depends on the potential vorticity at B’, which 
is yet unknown. If $(y) does not change from A’ to B’ by more than an O(6) amount, 
it  is self-consistent to set $ A # ( ~ )  = de!(y). However, the jump conditions (5.4)-(5.7) 
say nothing about continuity of $ a t  the shock, but only that i t  remains finite. 
Furthermore, the displacement of streamlines that occur across a moving jump can 
lead to  a rearrangement of the distribution of q5 across the channel. We next return 
to the equations of motion and the numerical model in an attempt to gain more 
insight into the behaviour of $ near a discontinuity. 
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6. The change in potential vorticity across a shock 
Again consider a shock and dispersive region that translate along the channel 

(figure 6). The momentum equations (2.1)-(2.3) with 6 = 1 for the flow become in 
vector form 

au 
- C , - + ( I I ~ V ) U - ~ X U + V ( ~ + ~ )  ax = 0. (6.1) 

As before, we rotate the coordinates (x, y) into new coordinates (n, s) such that s 
is tangent to the shock at a point P. Thus 

a a 
= cos8--sinB- 

a 
ax an as' 
- 

where 8 is measured between the shock and the y-axis. 
By definition, the change in potential vorticity across the shock can be expressed 

as 

A B  
A B  A B A  B 

where, as in figure 6, A and B lie immediately on either side of the shock. Suppose 
that conditions upstream of the shock (i.e. hg), uAn)(s), u$)(s),  c,, 8 )  are given. Since 
s-derivatives are allowed, the first two terms on the right-hand side of (6.3) can be 
evaluated directly using (5.4) and (5 .5) .  It remains to find an expression for adS)/an 
in terms of s-derivatives alone. The tangential component of (6.1) with some 
rearrangement is 

where c = c, cos 8 is the velocity of the shock normal to itself. The term h ( c - d n ) )  
is conserved in view of (5.4). Taking jumps and using (5.7) to eliminate the first two 
terms on the right-hand side, we find 

It follows from (6.3) that 

(6.4) 

Equation (6.4) can be further simplified if the shock forms a straight line 
( c  = constant) : 

as 
h(u(n) - c)  [ @ I  = 

A B  
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FIQURE 7. Potential vorticity profiles taken from the flow of figure 4. Section A is taken ahead of 
the upstream-moving bore, section B between this bore and the jump, and section C slightly 
downstream of the jump. The values were taken at 300 time steps, at which time the bores and 
jumps had become fully developed and the flow had achieved its asymptotic character. 

where V = dn) - c is the normal fluid velocity seen in a frame moving with the shock 
and B = +( P + + h is the Bernoulli function based on this velocity. V h  is a 
conserved quantity. 

Thus the change in potential vorticity is related to the rate of energy dissipation 

within the shock. It is possible to express [ B ]  in terms of the jump in height 

alone (Rayleigh 1914) as 
A B  

It is interesting to observe the values of [ $ ]  in the numerical solutions of figure 
A B  

4. This information is displayed in figure 7, which contains potential-vorticity profiles 
a t  three sections along the channel. The first (labelled ' A ' )  is taken upstream of the 
bore. Here $ = constant, as this was imposed as the initial condition. The second 
section (labelled ' B ' )  was taken between the bore and the jump. Here 4 decreases 
by a small amount which is probably within the limits of numerical error. The final 
section (labelled '(7') is taken downstream of the jump, and the potential vorticity 
here increases by a more significant amount. 

Are these results consistent with (6.6) 1 First consider the hydraulic jump, for which 
V h  = uh. This jump is essentially a breaking Kelvin wave which is frozen in the 
supercritical flow downstream of the sill. The largest values of [h] thus tend to occur 
on the left side of the channel, that  is A B  

> 0. 
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FIGURE 8. Plan view of channel showing bore moving away from obstacle and leaving behind a 
blocked region with cyclonic eddy. 

The change in potential vorticity is therefore positive, as verified by the numerical 
results. This change is most intense on the near side of the channel where the 
boundary-layer contribution to [hI3 is greatest. 

A B  

Analysis of the bore is also possible since the angle 8 was observed to remain 
approximately zero throughout the upstream propagation. Equation (6.6) is then 
allowed with V = uA-c = u A - c , .  Since c < 0, the term Vh will be larger in general 
than the corresponding value for the jump. Furthermore the neighbouring depths h, 
and hA are somewhat larger and the change in depth [h] somewhat smaller. Therefore, 

the magnitude of [q5] is less and this is again verified in figure 7. 
A B  

A B  

A more precise verification of the magnitude of [4] is difficult owing to the difficulty 

in measuring [h]  from numerical data. (The numerical model smears the shocks over 

5 or 6 grid points and i t  is difficult to judge which portion of the surface breaks and 
which simply has a steep slope.) However, using the largest possible values of [h] taken 

from the jump a t  x = 100 in figure 4 we estimate [q5]  = 0.03, which agrees with 

the order of magnitude of change indicated in figure 7. 
The changes in q5 plotted in figure 7 are small compared with q5 itself. Hence the 

connection formulas (5.9)-(5.11) can be applied accurately in conjunction with (5.12) 
by assuming that [q5] = 0. It would be possible to construct the solution for large time 

to  the initial-value problem by connecting the asymptotic flow t o  the initial flow using 
the jump conditions (5.9) and (5.10), and the conservation of the appropriate 
Riemann function across the rarefaction wave. This computation is not carried out 
here, but Houghton & Kasahara (1968) used the procedure successfully in connection 
with the non-rotating analogue of the problem. 

A B  

A B  

A B  

A B  

A B  

7. Total blockage by the obstacle 
We expect that  a semigeostrophic channel flow will be completely blocked if the 

obstructing obstacle is high enough or if a sufficient decrease in the upstream energy 
of the flow occurs (as often takes place in the deep ocean). Although this situation 
is difficult to  model numerically, we can piece together a scenario describing the 
blockage and predict the required obstacle height by extrapolating the numerical 
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results for partial blockage. The following discussion assumes the initial potential 
vorticity to be uniform and the change in potential vorticity across the blocking bore 
to be O(6), as occurs in the numerical results. Although there is no guarantee that 
[$] will continue to be small for large bores, i t  is hoped that the following analysis 

will provide a starting point and spur experimental investigation into the problem. 
We will limit the discussion to initially subcritical flows. 

As before, we assume that the blockage will be accomplished through formation 
of a bore which moves upstream from the obstacle, leaving behind a blocked region 
(figure 8). If the flow in the blocked region (labelled B )  is steady, then 

A B  

Q = J+w UBhBdy = +(hi+- hi-) = 0, 
-W 

in view of (2.5). 
The depth on either wall is therefore the same : 

hg+ = hB-. (7 .1)  

Since no fluid passes the sill, the streamline at +w connects with that a t  -w. 
Therefore the Bernoulli law demands that 

u;+ = U i -  (7.2) 

(7.3) 

away from the obstacle. Furthermore, since u = 0 a t  the sill, the obstacle must have 
height 

bb = &hk+ + hg+ = &hi- -k hB-. 

If the change in potential vorticity across the bore is O(6) then (3.1)-(3.8) continue 
to hold in the blocked region. I n  this case (3.7) gives 

= -$@'Ah = 0, 

so that the negative root of (7.2) is appropriate: 

UB- = -US+. (7.4) 

Using (7.1) and (7.4) with (3.1)-(3.6) it follows that 

The circulation in the blocked region therefore consists of a cyclonic eddy that is 
symmetric with respect to y (figure 8). Away from the obstacle the flow is uniform 
with respect to x, implying that v = 0. The recirculation is fed over the topography, 
where approaching fluid is turned to the left and develops an O(6) cross-channel 
velocity. 

Under these assumptions, it is possible to predict the blocking height bb, given the 
initial flow rate &, and energy B,. Applying (5.10) across the bore gives 

W W 

(hB- hA) dy = - U A  hA dy = -&o. 
cxJ-w I, 

Using (3.3) to evaluate the left-hand integral, we find 
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FIGURE 9. Asymptotic states for initiallesubcritical flow with &, = 4, = 1. Uniform initial 
states for B, < 5.0 do not exist. 

Application of (5.11) on either wall and summation of the results also gives 

-c,(uA+ hA++UA- hA-) = ~ u L +  h B + + h ; + - ( ~ i +  hA+++hi++ui-  hA-++h;-). 

Elimination of c, between the above two equations and use of (7.5) results in a single 
equation for h,+ in terms of the initial state: 

h i + +  [4-l(+TP2-2)-EA] h&++ [$-"4-'(&!-'-2) L A ]  hL+ 
-[+$-'T-2Q2+EA] h B + + ~ - 1 T - 2 Q 2 E A - + S T - 1 Q 0 Q 1 4 t  = 0,  (7.6) 

where 
&1 = uA+ h,++uA-hA- ,  

Q, = ui+ h A + + + h i + + u i -  hA-+&hi- .  

Once h,+ is found from (7.6) then bb is computed from (7.3) and (7.5) as 

bb = &;+ + h,+ = $$!f?($-'- hB+), + hB+. 

Once again, it is worthwhile mentioning the conditions under which this theory 
is valid. First, the blocked region must be in a steady state and no streamline must 
cross the sill. Secondly, the bore and its bordering dispersive boundary must have 
settled into an equilibrium state characterized by a single velocity c,. Finally, the 
change in potential vorticity from its initial unform value must be < O(S) across the 
blocking bore, as in the solutions of figure 4. 

Figure 9 shows the behaviour of bb as a function of the initial energy B,. Also shown 
is a plot of the corresponding values of critical obstacle height b, as computed from 
(4.2) and (4.3). 

8. Discussion 
For two distributions (uniform and linear) of initial potential vorticity, i t  has been 

shown that the initial stages of semigeostrophic adjustment proceeds in a similar way 
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to the non-rotating adjustment observed by Long (1954, 1970) and Houghton & 
Kasahara (1968). The Kelvin waves that occur in the present problem play the same 
roles that long gravity waves do in the earlier work. However, the breakage of the 
Kelvin waves and consequent shock formation introduces complications not present 
in the earlier work. Specifically, the calculation of the asymptotic state (as t +  00)  

through construction of a weak semigeostrophic solution depends upon knowing the 
jumps in potential vorticity across the shocks. Although a jump in potential vorticity 
can be related to the physical process of dissipation through (6.6) it  is difficult to use 
this information to construct a connection formula. This difficulty is primarily due 
to the complexity of the dispersive regions connecting the shock to the neighbouring 
semigeostrophic flows. Bulk connection formulas, such as (5.9), require an assumption 
concerning the jump in potential vorticity in order to be valid. 

The overwhelming majority of the work to date in the area of rotating hydraulics 
has been devoted to steady flows of uniform potential vorticity. We have endeavoured 
to show, however, that physical processes which lead to the establishment of a 
hydraulically controlled state may render the potential vorticity non-uniform, even 
when the adjustment occurs from an initial state of uniform potential vorticity. This 
does not diminish from the value of the earlier work; indeed the numerical results 
indicate that the non-uniformity induced during the adjustment can be small. The 
present need, however, is for a greater understanding of the behaviour of flows 
containingnon-uniform potential vorticity. The results of the numerical computations 
of $4 suggest that the adjustment of semigeostrophic flows of non-uniform qi is similar 
to that of uniform-qi flows, at least over the short timescales observed. It is not clear, 
however, what additional adjustment or instability might occur on longer timescales. 

There is also a need for further study of rotating shocks and their connection 
properties particularly with regard to the way in which potential vorticity is altered. 
For example, what is the structure of a shock propagating in a region of flow 
separation? Also, can shocks of larger amplitude than those produced in $4 
significantly alter the potential vorticity of passing fluid Z If so, the change may have 
implications for the stability of the downstream flow. Semigeostrophic instability is 
a problem which has only begun to be explored (see Orlanski 1968; Griffiths, 
Killworth & Stern 1982). In  the ocean, however, we envision the flow downstream 
of the obstacle emptying into a large basin and the dynamics becoming quasigeo- 
strophic there. The barotropic stability of the flow will then depend on the Fjortoft 
(1952) criterion that dqi/d$ must vanish for instability to occur. However, in the 
absence of friction the potential-vorticity gradient dqi/d$ can be traced back to the 
overflow which may contain a hydraulic jump. The structure of the jump may then 
control the stability of the downstream flow since $($) is set a t  the jump. It is the 
author’s opinion that such questions may be difficult to resolve numerically and that 
laboratory experiments may be more suitable. 
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J. Pedlosky, J. Whitehead, M. Hall, G. Flier1 and E. Mollo-Christensen for many 
useful discussions concerning the problem, and M. Lucas for help in preparation of 
the manuscript. 
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Appendix A. Numerical method 
The numerical method is based on a finite-difference scheme introduced by Lax 

& Wendroff (1960) and discussed in the textbook of Roache (1972). The scheme is 
designed to simulate systems of equations containing one spatial dimension written 
in conservation-law form. The conserved quantities (in the present case mass and 
momentum flux) implied by the conservation laws will also tend to be conserved in 
the numerical scheme, even in the presence of shocks. Because of this feature, the 
Lax-Wendroff method has been used successfully by a number of authors to compute 
solutions containing shocks. 

It is possible to extend the original Lax-Wendroff method to two spatial 
dimensions ; however the numerical scheme is extremely cumbersome and time- 
consuming (Roache 1972). A more economical version is a two-step variation of 
the Lax-Wendroff method introduced by Richtmeyer (1963), which requires an 
intermediate calculation to be done between each time step. Although less is known 
about the properties of the two-step difference equations, the method has been tested 
successfully in connection with shallow-water wave problems (Sielecki & Wurtele 
1970) and aerodynamic shock computations (Rubin & Burstein 1967). The difference 
equations used correspond to those listed by Sielecki and Wurtele. 

Unfortunately, the stability properties of two-dimensional two-step Lax-Wendroff 
methods are worse than those of the one-dimensional method (Roache 1972). For 
example, the numerical oscillations that occurred downstream of the free-surface 
shocks in the adjustment experiments of $3  (see figures 4 and 5) initially proved to 
be unacceptably large. For this reason an artificial damping term of the form 

was added to the x-momentum balance in order to damp disturbances with short 
wavelengths. The constant v is a pseudoviscosity, which typically had a value 
between 0.5 and 1.  

A 15 x 400 grid was used to form the channel, with the obstacle centred between 
rows 250 and 300. The sidewall boundary conditions were imposed by setting v = 0 
at sidewall grid points and extrapolating from the interior values of u and h through 
a second-order Taylor expansion. The difference calculation was carried out until the 
transients resulting from the adjustment near the obstacle collided with the ends of 
the grid or until the numerical oscillations grew unacceptable. 

Appendix B. Derivation of (5.9) 
Referring to figure 6, we consider a shock whose position x = q ( y , t )  changes 

according to T~ = c, = constant. The line x = A(y, t )  and x = B(y ,  t )  lie slightly 
upstream and downstream of q, and x = A’(t) and x = B’(t) represent the upstream 
and downstream extents of the dispersive region bordering the shock. 

First consider the momentum flux at the bore itself. From (5.5) and (5.6) we can 
write 

as both 
x-speed 

[ ( c - ~ ( ~ ) ) u ( ~ ) h - g h ~ ]  cos0+ [(c-u(n))u(s)h] sin8 = 0, 
A B A I3 

bracketed terms are identically zero. The normal speed c is related to the 
though c = c, cos 0.  From this it follows that 
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For translating disturbances with permanent form and speed c, the x-momentum 
flux (5.1) can be written as 

V*{(u-c,)uh+yP, uvh} = -h --v . (:: 
Integrating over the upstream dispersive region (labelled R, in figure 6) and 

applying the divergence theorem gives 

where ii is the unit normal to aR,. Along each wall, where f i  = (0,l)  and v = 0, the 
contour integral vanishes. Along the upstream border of R,, where x = A‘, we have 
ii = ( 1 , O ) .  Therefore 

” 

= -jJh,h($-v)da, 

with s measured along the bore. 

applying (B 1) finally gives 
Following the same procedure in R,, subtracting the result from (B2), and 
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